CBMC
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
piped_process.cpp
Go to the documentation of this file.
1
4
5// NOTES ON WINDOWS PIPES IMPLEMENTATION
6//
7// This is a note to explain the choices related to the Windows pipes
8// implementation and to serve as information for future work on the
9// Windows parts of this class.
10//
11// Windows supports two kinds of pipes: anonymous and named.
12//
13// Anonymous pipes can only operate in blocking mode. This is a problem for
14// this class because blocking mode pipes (on Windows) will not allow the
15// other end to read until the process providing the data has terminated.
16// (You might think that this is not necessary, but in practice this is
17// the case.) For example, if we ran
18// echo The Jabberwocky; ping 127.0.0.1 -n 6 >nul
19// on the command line in Windows we would see the string "The Jabberwocky"
20// immediately, and then the command would end about 6 seconds later after the
21// pings complete. However, a blocking pipe will see nothing until the ping
22// command has finished, even if the echo has completed and (supposedly)
23// written to the pipe.
24//
25// For the above reason, we NEED to be able to use non-blocking pipes. Since
26// anonymous pipes cannot be non-blocking (in theory they have a named pipe
27// underneath, but it's not clear you could hack this to be non-blocking
28// safely), we have to use named pipes.
29//
30// Named pipes can be non-blocking and this is how we create them.
31//
32// Aside on security:
33// Named pipes can be connected to by other processes and here we have NOT
34// gone deep into the security handling. The default used here is to allow
35// access from the same session token/permissions. This SHOULD be sufficient
36// for what we need.
37//
38// Non-blocking pipes allow immediate reading of any data on the pipe which
39// matches the Linux/MacOS pipe behaviour and also allows reading of the
40// string "The Jabberwocky" from the example above before waiting for the ping
41// command to terminate. This reading can be done with any of the usual pipe
42// read/peek functions, so we use those.
43//
44// There is one problem with the approach used here, that there is no Windows
45// function that can wait on a non-blocking pipe. There are a few options that
46// appear like they would work (or claim they work). Details on these and why
47// they don't work are over-viewed here:
48// - WaitCommEvent claims it can wait for events on a handle (e.g. char
49// written) which would be perfect. Unfortunately on a non-blocking pipe
50// this returns immediately. Using this on a blocking pipe fails to detect
51// that a character is written until the other process terminates in the
52// example above, making this ineffective for what we want.
53// - Setting the pipe timeout or changing blocking after creation. This is
54// theoretically possible, but in practice either has no effect, or can
55// cause a segmentation fault. This was attempted with the SetCommTimeouts
56// function and cause segfault.
57// - Using a wait for event function (e.g. WaitForMultipleObjects, also single
58// object, event, etc.). These can in theory wait until an event, but have
59// the problem that with non-blocking pipes, the wait will not happen since
60// they return immediately. One might think they can work with a blocking
61// pipe and a timeout (i.e. have a blocking read and a timeout thread and
62// wait for one of them to happen to see if there is something to read or
63// whether we could timeout). However, while this can create the right
64// wait and timeout behaviour, since the underlying pipe is blocking this
65// means the example above cannot read "The Jabberwocky" until the ping has
66// finished, again undoing the interactive behaviour desired.
67// Since none of the above work effectivley, the chosen approach is to use a
68// non-blocking peek to see if there is anthing to read, and use a sleep and
69// poll behaviour that might be much busier than we want. At the time of
70// writing this has not been made smart, just a first choice option for how
71// frequently to poll.
72//
73// Conclusion
74// The implementation is written this way to mitigate the problems with what
75// can and cannot be done with Windows pipes. It's not always pretty, but it
76// does work and handles what we want.
77
78#ifdef _WIN32
79# include "run.h" // for Windows arg quoting
80# include "unicode.h" // for widen function
81# include <tchar.h> // library for _tcscpy function
82# include <windows.h>
83#else
84# include <fcntl.h> // library for fcntl function
85# include <poll.h> // library for poll function
86# include <signal.h> // library for kill function
87# include <unistd.h> // library for read/write/sleep/etc. functions
88#endif
89
90#include "exception_utils.h"
91#include "invariant.h"
92#include "narrow.h"
93#include "piped_process.h"
94
95#include <cstring> // library for strerror function (on linux)
96#include <iostream>
97#include <vector>
98
99#ifdef _WIN32
100# define BUFSIZE (1024 * 64)
101#else
102# define BUFSIZE 2048
103#endif
104
105#ifdef _WIN32
111static std::wstring
112prepare_windows_command_line(const std::vector<std::string> &commandvec)
113{
114 std::wstring result = widen(commandvec[0]);
115 for(int i = 1; i < commandvec.size(); i++)
116 {
117 result.append(L" ");
118 result.append(quote_windows_arg(widen(commandvec[i])));
119 }
120 return result;
121}
122#endif
123
125 const std::vector<std::string> &commandvec,
126 message_handlert &message_handler)
127 : log{message_handler}
128{
129# ifdef _WIN32
130 // Security attributes for pipe creation
132 sec_attr.nLength = sizeof(SECURITY_ATTRIBUTES);
133 // Ensure pipes are inherited
134 sec_attr.bInheritHandle = TRUE;
135 // This sets the security to the default for the current session access token
136 // See following link for details
137 // https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa379560(v=vs.85) //NOLINT
138 sec_attr.lpSecurityDescriptor = NULL;
139 // Use named pipes to allow non-blocking read
140 // Build the base name for the pipes
141 std::string base_name = "\\\\.\\pipe\\cbmc\\child\\";
142 // Use process ID as a unique ID for this process at this time.
143 base_name.append(std::to_string(GetCurrentProcessId()));
144 const std::string in_name = base_name + "\\IN";
146 in_name.c_str(),
147 PIPE_ACCESS_OUTBOUND, // Writing for us
148 PIPE_TYPE_BYTE | PIPE_NOWAIT, // Bytes and non-blocking
149 PIPE_UNLIMITED_INSTANCES, // Probably doesn't matter
150 BUFSIZE,
151 BUFSIZE, // Output and input bufffer sizes
152 0, // Timeout in ms, 0 = use system default
153 // This is the timeout that WaitNamedPipe functions will wait to try
154 // and connect before aborting if no instance of the pipe is available.
155 // In practice this is not used since we connect immediately and only
156 // use one instance (no waiting for a free instance).
157 &sec_attr); // For inheritance by child
159 {
160 throw system_exceptiont("Input pipe creation failed for child_std_IN_Rd");
161 }
162 // Connect to the other side of the pipe
164 in_name.c_str(),
165 GENERIC_READ, // Read side
166 FILE_SHARE_READ | FILE_SHARE_WRITE, // Shared read/write
167 &sec_attr, // Need this for inherit
168 OPEN_EXISTING, // Opening other end
169 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_NO_BUFFERING, // Normal, but don't buffer
170 NULL);
172 {
173 throw system_exceptiont("Input pipe creation failed for child_std_IN_Wr");
174 }
177 {
178 throw system_exceptiont(
179 "Input pipe creation failed on SetHandleInformation");
180 }
181 const std::string out_name = base_name + "\\OUT";
183 out_name.c_str(),
184 PIPE_ACCESS_INBOUND, // Reading for us
185 PIPE_TYPE_BYTE | PIPE_NOWAIT, // Bytes and non-blocking
186 PIPE_UNLIMITED_INSTANCES, // Probably doesn't matter
187 BUFSIZE,
188 BUFSIZE, // Output and input bufffer sizes
189 0, // Timeout in ms, 0 = use system default
190 &sec_attr); // For inheritance by child
192 {
193 throw system_exceptiont("Output pipe creation failed for child_std_OUT_Rd");
194 }
196 out_name.c_str(),
197 GENERIC_WRITE, // Write side
198 FILE_SHARE_READ | FILE_SHARE_WRITE, // Shared read/write
199 &sec_attr, // Need this for inherit
200 OPEN_EXISTING, // Opening other end
201 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_NO_BUFFERING, // Normal, but don't buffer
202 NULL);
204 {
205 throw system_exceptiont("Output pipe creation failed for child_std_OUT_Wr");
206 }
208 {
209 throw system_exceptiont(
210 "Output pipe creation failed on SetHandleInformation");
211 }
212 // Create the child process
214 proc_info = std::make_unique<PROCESS_INFORMATION>();
217 start_info.cb = sizeof(STARTUPINFOW);
218 start_info.hStdError = child_std_OUT_Wr;
219 start_info.hStdOutput = child_std_OUT_Wr;
220 start_info.hStdInput = child_std_IN_Rd;
222 const std::wstring cmdline = prepare_windows_command_line(commandvec);
223 // Note that we do NOT free this since it becomes part of the child
224 // and causes heap corruption in Windows if we free!
225 const BOOL success = CreateProcessW(
226 NULL, // application name, we only use the command below
227 _wcsdup(cmdline.c_str()), // command line
228 NULL, // process security attributes
229 NULL, // primary thread security attributes
230 TRUE, // handles are inherited
231 0, // creation flags
232 NULL, // use parent's environment
233 NULL, // use parent's current directory
234 &start_info, // STARTUPINFO pointer
235 proc_info.get()); // receives PROCESS_INFORMATION
236 // Close handles to the stdin and stdout pipes no longer needed by the
237 // child process. If they are not explicitly closed, there is no way to
238 // recognize that the child process has ended (but maybe we don't care).
241 if(!success)
242 throw system_exceptiont("Process creation failed.");
243# else
244
245 if(pipe(pipe_input) == -1)
246 {
247 throw system_exceptiont("Input pipe creation failed");
248 }
249
250 if(pipe(pipe_output) == -1)
251 {
252 throw system_exceptiont("Output pipe creation failed");
253 }
254
255
256 if(fcntl(pipe_output[0], F_SETFL, O_NONBLOCK) < 0)
257 {
258 throw system_exceptiont("Setting pipe non-blocking failed");
259 }
260
261 // Create a new process for the child that will execute the
262 // command and receive information via pipes.
264 if(child_process_id == 0)
265 {
266 // child process here
267
268 // Close pipes that will be used by the parent so we do
269 // not have our own copies and conflicts.
270 close(pipe_input[1]);
271 close(pipe_output[0]);
272
273 // Duplicate pipes so we have the ones we need.
277
278 // Create a char** for the arguments plus a NULL terminator (by convention,
279 // the first "argument" is the command itself)
280 char **args = reinterpret_cast<char **>(
281 malloc((commandvec.size() + 1) * sizeof(char *)));
282 // Add all the arguments to the args array of char *.
283 unsigned long i = 0;
284 while(i < commandvec.size())
285 {
286 args[i] = strdup(commandvec[i].c_str());
287 i++;
288 }
289 args[i] = NULL;
290 execvp(commandvec[0].c_str(), args);
291 // The args variable will be handled by the OS if execvp succeeds, but
292 // if execvp fails then we should free it here (just in case the runtime
293 // error below continues execution.)
294 while(i > 0)
295 {
296 i--;
297 free(args[i]);
298 }
299 free(args);
300 // Only reachable if execvp failed
301 // Note that here we send to std::cerr since we are in the child process
302 // here and this is received by the parent process.
303 std::cerr << "Launching " << commandvec[0]
304 << " failed with error: " << std::strerror(errno) << std::endl;
305 abort();
306 }
307 else
308 {
309 // parent process here
310 // Close pipes to be used by the child process
311 close(pipe_input[0]);
312 close(pipe_output[1]);
313
314 // Get stream for sending to the child process
316 }
317# endif
318 process_state = statet::RUNNING;
319}
320
322{
323# ifdef _WIN32
324 TerminateProcess(proc_info->hProcess, 0);
325 // Disconnecting the pipes also kicks the client off, it should be killed
326 // by now, but this will also force the client off.
327 // Note that pipes are cleaned up by Windows when all handles to the pipe
328 // are closed. Disconnect may be superfluous here.
333 CloseHandle(proc_info->hProcess);
334 CloseHandle(proc_info->hThread);
335# else
336 // Close the parent side of the remaining pipes
338 // Note that the above will call close(pipe_input[1]);
339 close(pipe_output[0]);
340 // Send signal to the child process to terminate
342# endif
343}
344
346piped_processt::send(const std::string &message)
347{
348 if(process_state != statet::RUNNING)
349 {
351 }
352#ifdef _WIN32
353 const auto message_size = narrow<DWORD>(message.size());
356 const int retry_limit = 10;
358 {
359 // `WriteFile` can return a success status but write 0 bytes if we write
360 // messages quickly enough. This problem has been observed when using a
361 // release build, but resolved when using a debug build or `--verbosity 10`.
362 // Presumably this happens if cbmc gets too far ahead of the sub process.
363 // Flushing the buffer and retrying should then succeed to write the message
364 // in this case.
365 if(!WriteFile(
366 child_std_IN_Wr, message.c_str(), message_size, &bytes_written, NULL))
367 {
368 const DWORD error_code = GetLastError();
369 log.debug() << "Last error code is " + std::to_string(error_code)
370 << messaget::eom;
372 }
373 if(bytes_written != 0)
374 break;
375 // Give the sub-process chance to read the waiting message(s).
377 log.debug() << "Zero bytes send to sub process. Retrying in "
378 << wait_milliseconds << " milliseconds." << messaget::eom;
381 }
382 INVARIANT(
384 "Number of bytes written to sub process must match message size."
385 "Message size is " +
386 std::to_string(message_size) + " but " + std::to_string(bytes_written) +
387 " bytes were written.");
388#else
389 // send message to solver process
390 int send_status = fputs(message.c_str(), command_stream);
392
393 if(send_status == EOF)
394 {
396 }
397# endif
399}
400
402{
403 INVARIANT(
404 process_state == statet::RUNNING,
405 "Can only receive() from a fully initialised process");
406 std::string response = std::string("");
407 char buff[BUFSIZE];
408 bool success = true;
409#ifdef _WIN32
411#else
412 int nbytes;
413#endif
414 while(success)
415 {
416#ifdef _WIN32
418#else
420 // Added the status back in here to keep parity with old implementation
421 // TODO: check which statuses are really used/needed.
422 if(nbytes == 0) // Update if the pipe is stopped
423 process_state = statet::ERRORED;
424 success = nbytes > 0;
425#endif
426 INVARIANT(
427 nbytes < BUFSIZE,
428 "More bytes cannot be read at a time, than the size of the buffer");
429 if(nbytes > 0)
430 {
431 response.append(buff, nbytes);
432 }
433 }
434 return response;
435}
436
438{
439 // can_receive(PIPED_PROCESS_INFINITE_TIMEOUT) waits an ubounded time until
440 // there is some data
442 return receive();
443}
444
449
450bool piped_processt::can_receive(std::optional<std::size_t> wait_time)
451{
452 // unwrap the optional argument here
453 const int timeout = wait_time ? narrow<int>(*wait_time) : -1;
454#ifdef _WIN32
455 int waited_time = 0;
458 {
459 const LPVOID lpBuffer = nullptr;
460 const DWORD nBufferSize = 0;
461 const LPDWORD lpBytesRead = nullptr;
463 const LPDWORD lpBytesLeftThisMessage = nullptr;
466 lpBuffer,
472 {
473 return true;
474 }
475// TODO make this define and choice better
476# define WIN_POLL_WAIT 10
479 }
480#else
481 struct pollfd fds // NOLINT
482 {
483 pipe_output[0], POLLIN, 0
484 };
486 const int ready = poll(&fds, nfds, timeout);
487
488 switch(ready)
489 {
490 case -1:
491 // Error case
492 // Further error handling could go here
493 process_state = statet::ERRORED;
494 // fallthrough intended
495 case 0:
496 // Timeout case
497 // Do nothing for timeout and error fallthrough, default function behaviour
498 // is to return false.
499 break;
500 default:
501 // Found some events, check for POLLIN
502 if(fds.revents & POLLIN)
503 {
504 // we can read from the pipe here
505 return true;
506 }
507 // Some revent we did not ask for or check for, can't read though.
508 }
509# endif
510 return false;
511}
512
514{
515 return can_receive(0);
516}
517
519{
520 while(process_state == statet::RUNNING && !can_receive(0))
521 {
522#ifdef _WIN32
524#else
526#endif
527 }
528}
ait supplies three of the four components needed: an abstract interpreter (in this case handling func...
Definition ai.h:562
mstreamt & debug() const
Definition message.h:421
static eomt eom
Definition message.h:289
bool can_receive()
See if this process can receive data from the other process.
void wait_receivable(int wait_time)
Wait for the pipe to be ready, waiting specified time between checks.
std::string receive()
Read a string from the child process' output.
send_responset send(const std::string &message)
Send a string message (command) to the child process.
statet
Enumeration to keep track of child process state.
piped_processt(const std::vector< std::string > &commandvec, message_handlert &message_handler)
Initiate a new subprocess with pipes supporting communication between the parent (this process) and t...
statet get_status()
Get child process status.
send_responset
Enumeration for send response.
std::string wait_receive()
Wait until a string is available and read a string from the child process' output.
Thrown when some external system fails unexpectedly.
int fcntl(int fd, int cmd,...)
Definition fcntl.c:34
#define BUFSIZE
int __CPROVER_ID java::java io InputStream read
Definition java.io.c:5
double log(double x)
Definition math.c:2449
Subprocess communication with pipes.
#define PIPED_PROCESS_INFINITE_TIMEOUT
int kill(pid_t pid, int sig)
Definition signal.c:15
#define PRECONDITION(CONDITION)
Definition invariant.h:463
#define INVARIANT(CONDITION, REASON)
This macro uses the wrapper function 'invariant_violated_string'.
Definition invariant.h:423
FILE * fdopen(int handle, const char *mode)
Definition stdio.c:256
int fputs(const char *s, FILE *stream)
Definition stdio.c:611
int fclose(FILE *stream)
Definition stdio.c:230
int fflush(FILE *stream)
Definition stdio.c:647
void * malloc(__CPROVER_size_t malloc_size)
Definition stdlib.c:212
void abort(void)
Definition stdlib.c:128
void free(void *ptr)
Definition stdlib.c:317
char * strdup(const char *str)
Definition string.c:590
std::wstring widen(const char *s)
Definition unicode.cpp:49
int usleep(unsigned int usec)
Definition unistd.c:34
int close(int fildes)
Definition unistd.c:139
int pipe(int fildes[2])
Definition unistd.c:90